Ocean Biodiversity Listening Project
The ocean is full of sounds that are generated from geophysical events, marine animals, and human activities. By using a hydrophone (a microphone for underwater use), we can hear chirps of marine mammals, choruses of soniferous fish, and pulsed sounds of benthic invertebrates. These bioacoustic signals reveal the status of marine biodiversity and ecosystem health. On the other hand, the increased maritime traffic, over-exploitation of marine resources, and the development of renewable energy have led to a global increase in underwater noise. Listening to underwater sounds allows us to remotely acquire ecological data of marine biodiversity and investigate the changes of biodiversity in response to climate change and anthropogenic development.
In this project, we attempt to establish a large-scale soundscape monitoring network and characterize ecosystem-specific soundscapes by separating sounds from geophonic, biological, and anthropogenic sources. Based on information retrieval techniques, the acoustic data are transformed into metrics that describe the quality of acoustic habitat, the behavior of soniferous animals, and noise-generating activities. The outcomes will allow managers and stakeholders to use soundscape information to monitor the trends of marine ecosystems and perform data-driven decision making in conservation management.
Underwater sounds of rainfall
Sounds of a fishing vessel
Sounds of deep-sea hydrothermal vents
Deep-sea ambient
Fish chorus
Sounds of crustaceans
Chirps of Indo-Pacific humpback dolphins
Fish chorus recorded at 5500 m depth
Soundscape-based Ecosystem Monitoring
We collect underwater sounds from marine ecosystems by using fixed-location platforms, towed surveys, and autonomous underwater vehicles. Audio data are archived in cloud platforms in order to facilitate seamless access for collaborators. On the basis of newly developed techniques of soundscape information retrieval, we extract acoustic indices to visualize the spatial-temporal dynamics of biological and anthropogenic activities.
Network
We collaborate with international scientists to establish a soundscape monitoring network that covers inshore waters, river estuaries, algal reefs, coral reefs, seagrass beds, continental shelves, hydrothermal vents, and various deep-sea benthic habitats. Switch on the sidebar in the following map to see the list of recording locations. Click each recording location to see detail information.
Visualizing the Dynamics of Marine Ecosystems
We visualize the dynamics of marine ecosystems by analyzing the temporal and spectral variations of underwater recordings. We also produce acoustic indices specific to biological and anthropogenic activities to improve the ecological applications of marine soundscapes. Below we show a long-term spectrogram of coral reef soundscapes and the audio separation result of biological choruses and shipping activities.
On the basis of information generated from marine soundscapes, the Ocean Biodiversity Listening Project aims to predict the changes of geophysical environment, marine biodiversity, and anthropogenic activities in marine ecosystems from the inter-tidal zone to the hadal zone of deep-sea trenches. We believe that the outcome will transform soundscapes as a new tool for conservation management. Through global collaboration, we can establish a data-informed platform and help stakeholders assess the resilience of marine ecosystems to environmental and anthropogenic stressors.
Open Data
中央研究院海洋生態聲學與資訊實驗室. (2023). LTSER Lyudao 珊瑚礁水下聲景調查資料 [Data set]. https://pid.depositar.io/ark:37281/k518c4w3c
Tzu-Hao Lin, Shinsuke Kawagucci. (2023). A year-long deep-sea soundscape dataset off Minamitorishima Island [Data set]. https://pid.depositar.io/ark:37281/k5t750930
林子皓、周宜鞍、黃千芬. (2021). 基隆潮境公園與桃園觀新海域水下聲景 [Data set]. https://pid.depositar.io/ark:37281/k5g258093
林子皓、王靜偉、黃光敬、張家茂. (2022). 台灣西部沿海白海豚重要棲地海洋聲景 [Data set]. https://pid.depositar.io/ark:37281/k5d5s6j8c
Tzu-Hao Lin, Chong Chen, Hiromi Kayama Watanabe, Tomonari Akamatsu, Shinsuke Kawagucci. (2021). Deep-sea soundscapes of Japan [Data set]. https://pid.depositar.io/ark:37281/k577s0k8p
Tzu-Hao Lin, Tomonari Akamatsu, Yu Tsao. (2021). Deep water soundscapes off northeastern Taiwan [Data set]. https://pid.depositar.io/ark:37281/k53483800
Tzu-Hao Lin, Tomonari Akamatsu, Frederic Sinniger, Saki Harii. (2020). Coral Reef Soundscapes off Sesoko Island, Okinawa, Japan [Data set]. https://pid.depositar.io/ark:37281/k5d515442
Tzu-Hao Lin, Colin K. C. Wen. (2020). Algal Reef Soundscapes at Taoyuan, Taiwan [Data set]. https://pid.depositar.io/ark:37281/k5f7d3m1w
Publications
Lin, T.-H., Kawagucci, S. (2023) Acoustic twilight: A year-long seafloor monitoring unveils phenological patterns in the abyssal soundscape. Limnology and Oceanography Letters, in press.
Lin, T.-H., Sinniger, F., Harii, S., Akamatsu, T. (2023) Using soundscapes to assess changes in coral reef social-ecological systems. Oceanography, 36 (Supplement 1): 20–27.
Chen, C., Lin, T.-H., Watanabe, H. K., Akamatsu, T., Kawagucci, S. (2021) Baseline soundscapes of deep-sea habitats reveal heterogeneity among ecosystems and sensitivity to anthropogenic impacts. Limnology and Oceanography, 66: 3714-3727.
Lin, T.-H., Akamatsu, T., Tsao, Y. (2021) Sensing ecosystem dynamics via audio source separation: A case study of marine soundscapes off northeastern Taiwan. PLoS Computational Biology, 17: e1008698.
Lin, T.-H., Akamatsu, T., Sinniger, F., Harii, S. (2021) Exploring coral reef biodiversity via underwater soundscapes. Biological Conservation, 253: 108901.
Heard, J., Tung, W.-C., Pei, Y.-D., Lin, T.-H., Lin, C.-H., Akamatsu, T., Wen, C. K. C. (2021) Coastal development threatens area supporting greatest fish diversity at Taoyuan Algal Reef, NW Taiwan. Aquatic Conservation: Marine and Freshwater Ecosystems, 3: 590-604.
Lin, T.-H., Chen, C., Watanabe, H. K., Kawagucci, S., Yamamoto, H., Akamatsu, T. (2019) Using soundscapes to assess deep-sea benthic ecosystems. Trends in Ecology & Evolution, 34: 1066-1069.
Lin, T.-H., Yang, H.-T., Huang, J.- M., Yao, C.-J., Lien, Y.-S., Wang, P.-J., Hu, F.-Y. (2019) Evaluating changes in the marine soundscape of an offshore wind farm via the machine learning-based source separation. Underwater Technology 2019. DOI: 10.1109/UT.2019.8734295.
Open for Collaboration
The Ocean Biodiversity Listening Project was initiated since 2018. Please click each recording location on the map to check the list of project collaborators. We are seek collaborators and funding supports. Please contact us if you are interested in our project.
Funding Support
Academia Sinica
National Science and Technology Council, Taiwan (2023-)
Ministry of Science and Technology, Taiwan (2020-2022)
Ocean Conservation Administration, Ocean Affairs Council (2021)
Asi@Connect (2017-2018)
JSPS KAKENHI (2016-2020)